Arduino IDE

Written by Mark Webster, Ousema Zayati, and ??

Summary
Learn to use the Arduino IDE to develop microcontroller projects.

Introduction

The software called Arduino Integrated Development Environment (Arduino IDE) is free
software from the Arduino organization used to create programs that run on the Arduino family
of microcontroller boards, and many other common microcontroller boards as well.

Download

The Arduino IDE can be obtained from: https://www.arduino.cc/en/main/software

Download the Arduino IDE

ARDUINO 1.8.8 Windows app Requires Win £1ar 10
The ogeen-source Arduing Saftware (IDE) makes it ekdy Lo Get 58

white code and upoed it oo the board. It Funs on

Windows, Mac 05 X and Linux. The ervironment i

Mac 08 X 0.8 sountain Lion or neéwer

©.0,

wiritten n fava and based on Procesung and other open-
sorce softwarne

This sofisware can be used with any Arduino baard Linux 22 bits
Refier to the Getring Started page for instafiztion Linux 64 hits

ingirictions Limux arm

Checksums {sha51Z)

The IDE is cross platform and available on the three main operating systems, Windows, Mac
OS X, and Linux. Most computers are 64 bit. Raspberry Pi computers are ARM based.

On Windows the IDE is installed at C:\Program Files (x86)\Arduino\
On Raspbian the IDE is usually installed at: /usr/share/arduino/

On other Linux systems the IDE may be in /opt/arduino/ or /usr/local/arduino/

Generally the full windows IDE is preferred over the Windows app.

https://www.arduino.cc/en/main/software

The installer should put the files in the correct location. The Arduino sketches (programs) you
create are stored in a different spot on the computer, as are the libraries you download.
Generally, you don’t need to know where the IDE stores its files. The menu or icon shortcut will
have the path to the arduino executable.

The Arduino IDE is written in the Java language which interpreted so it is cross platform for any
operating system with a Java Runtime Environment (JRE). That should be installed already with
the operating system. Raspbian includes the hard float optimized version of the Java SE
Runtime Environment.

If for some reason it isn’t or is corrupt, then download a new version from Oracle.
https://www.java.com/en/download/

On Linux, the version of the Arduino IDE that is installed by “sudo apt-get install arduino” is
usually old. The newest version can be downloaded from the Arduino.cc website. For the
Raspberry Pi, download the ARM version. Multiple versions of the Arduino IDE can be installed
on the same computer if needed to work with older sketches.

Sketch and Library Location

The programs created with the Arduino IDE are called sketches, but they are actually C or C++
programs. The file extension is *.ino. The sketch is stored in a directory/folder with the same
name as the *.ino file. The arduino sketches and corresponding folders are located in an
Arduino folder for newer versions of the IDE.

On the Raspberry Pi for older versions of the Arduino IDE, like 1.6.6, these sketches are in a
folder /home/pi/sketchbook. For example, the sketch KeyEcho.ino is located in
/home/pi/sketchbook/KeyEcho/KeyEcho.ino. All the user installed libraries on the Raspberry Pi
for older versions of the IDE go in the folder /home/pi/sketchbook/libraries.

On Linux, for newer versions of the Arduino IDE, like 1.8.8, the sketches and libraries are
installed in a folder called “Arduino” in the user's home directory. For example, for the user “pi”
the folder is /home/pi/Arduino/KeyEcho and the libraries are in a folder called “libraries” in the
Arduino folder.

On Windows machines the sketches and libraries are in a folder called “Arduino” in the
Documents folder. In Windows the Documents folder is in the “My Documents” folder, or for

Windows 10 the location is ThisPC -> Documents -> Arduino

A guide to installing libraries is at: https://www.arduino.cc/en/Guide/Libraries

https://www.java.com/en/download/
https://www.arduino.cc/en/Guide/Libraries

Compile and Upload Code

In the Arduino IDE there are two icons on the top row for compile and upload. The checkmark is
compile, the right arrow is upload, the grid is new sketch, the up arrow is open, the down arrow
is save.

¢ Blink| Arduino 1.8.8
File Edit Sketch Tools Help

The same commands are available on the Sketch menu. Note the keyboard shortcuts of Ctrl+R,
Ctrl+U which are quite handy.

Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Crrl+Ale+5

Cerl+K
B include Library
ABEL AddFile...

Most Arduinos have an on-board LED you can

By default, the Upload command also compiles the code.

Inline Question: List 3 ways to compile a program

In the black console window at the bottom, there are any compile errors, warnings, and also info
on how much memory was used. Since the Arduino Uno only has 32 K of RAM, it is necessary
to manage memory usage for larger programs. Just click in the console window and Ctrl+A to
select all the comments, then Ctrl+C to copy them. Paste into any text editor to view the
messages. Here’s an example of messages for the Blink program. There were no errors.

This is the full text pasted into the Pluma text editor. Notice the actual error is a missing
semicolon several lines above the last error found by the compiler. It helps to scroll up in the
error messages to the first error listed.

e *Unsaved Document 1-Pluma

File Edit View Search Tools Documents Help

E_ B= Open ~ A% save g. €&, Undo

|7 *Unsaved Document 1 %

1 Arduino: 1.8.8 (Linux), Board: "Arduino/Genuino Uno"

2

3 /tmp/arduino_modified_sketch_858067/AnalogReadSerial.ino: In function 'vold setup()':
4 AnalogReadSerial:17:1: error: expected ';' before '}' token
5)

6 N

7 exit status 1

8 expected ';' before '}' token

9

18 This report would have more information with

11 "Show verbose output during compilation”

12 option enabled in File -= Preferences.

13 [:}

Plain Text = Tab width: 4 = Ln5, Col3 INS

When successfully compiled, the black console window will describe the amount of memory
used by each part of the code. The Arduino Uno only has 32K of flash ram so for larger
programs this memory usage is critical information.

This BLINK sketch is about as tiny as it gets, and uses 1460 bytes (0%) of program storage
space. Maximum is 253952 bytes.

Global variables use 9 bytes (0%) of dynamic memory, leaving 8183 bytes for local variables.
Maximum is 8192 bytes.

Selecting Board and Serial Port

Prior to compiling a new sketch for the first time, one must select the Arduino board to be used
and the serial port. The standard boards are listed. Clones use the same settings as the
standard board. If additional boards are installed they will show up in the sub-menu.

¢ Blink | Arduino 1.8.8
File Edit Sketch IIEEER Helr

EButo Format

WIF FININA Firmware Updater
‘Board' "Arduino/Gentino Mega or Mega 2560"

Processor: "ATmega2 \Mega 25
Part
Get Board InFo

Pr Gramimer "B

o . HuﬁuﬁﬁemﬁmeégaurE‘mgé
Arduiro Mega ADH i

Arduing Leonard:

Arduino Leonardo ETH

Arduing,

Select the port the Arduino cable is connect to. On Windows serial ports are called “COM1: ,
COM2:, etc”. On Linux serial ports are files in the “/dev/” directory. If you are unsure which port
is used, in a terminal window before plugging in the Arduino to the USB type “Is /dev/tty*” then
plug in the Arduino and type “Is /dev/tty*” again. The new entry will be the Arduino. Here’s and
example of the terminal screen.

File Edit

plimakerpi:

fdev/tty
fdev/ttys
fdev/ttyl
fdev/ttyle
fdev/ttyll
fdev/ttyl2
fdev/ttyl3
fdev/ttyld
fdev/ttyls
fdev/ttylé
fdev/ttyl?
fdev/ttyls

pl@makerpi:

fdev/tty
fdev/tty8
fdev/ttyl
fdev/ttyle
fdev/ttyll
fdev/ttyl2
fdev/ttyl3
fdev/ttyld
fdev/ttyls
fdev/ttylé
fdev/ttyl7
fdev/ttyl8

pl@makerpi:

k]

bs Help

fdev/ttyls
fdev/tty2

fdev/tty28e
fdev/tty2l
fdev/tty22
fdev/tty23
fdev/tty24
fdev/tty25s
fdev/tty26
fdev/tty27
fdev/tty28
fdev/tty29
fdev/ttyls
fdev/tty2

fdev/tty2e
fdev/tty21
fdev/tty22
fdev/tty23
fdev/tty24
fdev/tty25s
fdev/tty26
fdev/tty27
fdev/tty28
fdev/tty29

-u Dev

fdev/tty3
fdev/tty38
fdev/tty31
fdev/tty3z
fdev/tty33
fdev/tty34
fdev/tty35s
fdev/tty36
fdev/tty37
fdev/tty3s
fdev/tty39
fdev/ttyd

fdev/tty3

fdev/tty38e
fdev/tty31
fdev/tty32
fdev/tty33
fdev/tty34
fdev/tty35s
fdev/tty36
fdev/tty37
fdev/tty3s
fdev/tty39
fdev/ttyd

Jdev/ttyde
Jdev/ttydl
Jdev/ttyd2
fdev/tty43
Jdev/ttydd
Jdev/ttyds
Jdev/ttyd6

Jdev/ttyd7
Jdev/ttyas
Jdev/ttyds
Jdev/tty5s

/dev/tty58

Jdev/ttyds
Jdev/ttydl
Jdev/ttyd2
Jdev/ttyd3
Jdev/ttydd
Jdev/ttyds
Jdev/ttyds
Jdev/ttyd7
fdev/tty48
Jdev/ttyd9
/dev/tty5s

/dev/tty58

Select the serial port on the Tools -> Port menu.

nmmol.88

fdev/tty51
fdev/tty52
fdev/tty53
fdev/tty54
fdev/tty55
fdev/tty56
fdev/ttys7
fdev/tty58
fdev/tty59
fdev/ttyé

fdev/tty6oe
fdev/tty6l

fdev/tty51
fdev/tty52
fdev/tty53
fdev/ttys4
fdev/tty55
fdev/tty56
fdev/tty57
fdev/tty58
fdev/tty59
fdev/ttyé

fdev/tty68
fdev/tty6l

fdev/tty62
fdev/tty63
fdev/tty7
fdev/tty8
fdev/ttyg
Sdev/ttyAMAB
fdev/ttyprintk

fdev/tty62
fdev/tty63
fdev/tty7
fdev/ttys
fdev/tty9
fdev/ttyACMB
fdev/ttyAMAB
fdev/ttyprintk

The Mac OS X operating system is a form of Unix, so the serial port can be found the same way
as a Raspberry Pi. In a terminal window just type “Is /dev/tty*” before and after plugging in the
cable.

Notice the Programmer item on the Tools menu is set to AVRISP mkil. This is the default unless
using the Arduino as an ISP to program other microcontrollers.

Compile

The compilation process is simple for the user, as it was designed to be. Under the hood the
IDE does some complicated actions. The complete build process can be found in:
https://github.com/arduino/Arduino/wiki/Build-Process

Basically, the *.ino filenames are made into *.cpp, the IDE searches for files in the Arduino
application folder, and in the user’s library folder. It also compiles any system files needed in the
IDE installation folder. The cross-compilers avr-gcc and avr-g++ invoked. Compiled object *.0
files are linked together into a *.hex file which is uploaded to the Arduino board by the software
“avrdude”.

Some non-Arduino boards like ESP32 use slow Python code to compile Arduino sketches so
the compile and upload process will take much longer than Arduino boards and their clones.

The larger the program, and the larger the included libraries, the longer the compile time.

Inline question: Name 3 things the IDE does when a sketch is compiled.

Upload

The upload button or keyboard shortcut Ctrl+U will compile and upload the sketch to the Arduino
board on the specified serial port. If successful the message “Done uploading” will appear. The
Arduino board serial TX and RX lights will blink. When done uploading the board will reset and
the program will start running. Occasionally the reset fails, especially on other boards like the
ESP32, and one must manually press the physical reset button on the board.

If the serial port is messed up somehow, it generate an error message. Sometimes rebooting
the computer will reset the serial port. Sometimes the error is real and the board is defective or

the cable is defective.

Under the hood, the program “avrdude” is called by the IDE to upload the compiled sketch.

https://github.com/arduino/Arduino/wiki/Build-Process

Brave or crazy programmers can call avr-gcc and avr-dude manually within a terminal window
and not use the Arduino IDE. There is a tutorial on avrdude at the ladyada website (related to
Adafruit devices).

http://www.ladyada.net/learn/avr/avrdude.html

Using Libraries

The Arduino IDE is designed to be as friendly as possible to hobbyist makers. Often this means
hiding the messy details of controlling and communication with sensors and electronic modules.
The messy details are put in a library that the hobbyist can call without understanding the
internals.

A few libraries are built-into the Arduino IDE, most are downloaded from the Internet and
installed with the Library Manager.

Built in libraries

The built in libraries can be called without downloading and installing anything from the Internet.
Details can be found at:

https://www.arduino.cc/en/Reference/Libraries

----Here’s the list of default libraries as of Arduino IDE 1.8.8 --------------

EEPROM - reading and writing to "permanent" storage

Ethernet - for connecting to the internet using the Arduino Ethernet Shield, Arduino Ethernet
Shield 2 and Arduino Leonardo ETH

Firmata - for communicating with applications on the computer using a standard serial protocol.
GSM - for connecting to a GSM/GRPS network with the GSM shield.

LiquidCrystal - for controlling liquid crystal displays (LCDs)

SD - for reading and writing SD cards

Servo - for controlling servo motors

SPI - for communicating with devices using the Serial Peripheral Interface (SPI) Bus
SoftwareSerial - for serial communication on any digital pins. Version 1.0 and later of Arduino
incorporate Mikal Hart's NewSoftSerial library as SoftwareSerial.

Stepper - for controlling stepper motors

TFT - for drawing text , images, and shapes on the Arduino TFT screen

WiFi - for connecting to the internet using the Arduino WiFi shield

Wire - Two Wire Interface (TWI/12C) for sending and receiving data over a net of devices or
Sensors.

Example code

http://www.ladyada.net/learn/avr/avrdude.html
https://www.arduino.cc/en/Reference/Libraries

Most libraries, even those downloaded from the Internet will contain example programs that are
added to the Arduino IDE File-> examples menu toward the bottom. Custom library examples
are at the far bottom of the menu. These are valuable to figure out how to use a library.

¢ AnalogReadSerial | Arduino 1.8.8 % E l

05.USB
10.5tarterkit_Basickit
11.ArduinolSP

| Examples for any board

_lose _trib+wW Adafruilt Clreult Playvground

Ctrl+Shift+S

etup Cori+shift+P
Cerl+P

Preferences Lir+Lomma

/ the setup routine r
void setup() {
f/f initialize serial

Serial.begin(9600) ;

= Exarnples For Arduing/Genuine Uno
EEPROM

ited. A common way to solve this [
e and see the cormrect syntax for thig

Incompatibilities

A common problem with examples or libraries downloaded from the Internet is incompatibility
between the library and the example code. The library may have changed since the examples
were created. A common way to solve this problem is to look at the source code for the library
include file and see the correct syntax for the method calls for that library. Then edit the
example code to match the actual library code.

Library Manager

To install new libraries, they can be copied manually into the libraries folder or preferably,
installed using the Library Manager which is on the Tools menu.

To include an already installed library, use the Include Library menu item. This is not needed for
standard libraries like <Wire.h>, <Servo.h>, <Stepper.h> which are installed by default.

* AnalogReadSerial | Arduino 1.8.8

CErl+R
Cerl+L

Upload Using Programmer Cerl+Shift+U

Export compiled Binary Cerl+AlE+5
Show ul-::.P-_'tl:: h Folder Chrl+ } Add 7P Library...
§ Include Library v
} AddFile.. Arduino libraries
L Bridge
| EEPROM

Esplora

Ethernet

Firmata

Manage Libraries..

// the setup routine runs once when you
vold setup() {
S/ initialize serial communication at
Serial.begin(9600) ;

}

// the loop routine runs over and over &
void loop() { M

. S - Lo’
R

Including the library puts the correct #define <libraryname.h> file at the start of the *.INO sketch.
The header file can also be included manually.

If the library is not already installed, there are two choices. First option, go to the Manage
Libraries and search for a new library using a keyword.

In the Library Manager dialog, one can search through the existing libraries for a term such as
DH11. If the library is not already installed, click on the install button.

Type | Al v | Tapic |Al v | |DH1Y

TroykalHT by [ger Dementiew

Allowrs you 1o read the temperature and humidity froo the DHT series sensors, The Worary allows Lo obtan data of relative humidity and

ramperature in degraas Calsiss, Kalvin and Fahranhsit, Supported sensors: DH11, DHT21, DHT22.
Mare infa

Once installed, the text “INSTALLED” will appear whenever searching for that library. Example
code to use that library will also be installed.

The second method is to download a library as a zip file, often from a location such as GitHub.

Here is an example of a DH11 library in GitHub. Click the “Download ZIP” button.

This code by Arduino uno board to run DH11 sensor with LCD1602_12C

P 2 commils ¥ 1 branch T3 0 refeases 11 1 contributor
|
h eaghl Acd files vin upload Clone with HTTPS @

Uisa Git or checkoul with SWM using the wab LRL

https://github.com/eagll/DH1l LCDIGER | m
LCD1802_12Ch Add files via upload
Download ZIP b
3N ProGram.ine Add files wa uploa e

Once the ZIP file is downloaded, go to the Sketch->Include Library->Add .ZIP library option.
Navigate to where the ZIP file is located, select it and click OK

e Select a zip file or a folder containing the library you'd like to add

| New Folder || Delete File | Rename File |

|:fhomefmarkwaownLoads |l

Folders | |Eiles |
S = 2018-10-09-raspbian-stretch.zip -
. Archive-8F87.zip
3.5inch_Arduino_ILI9486 V1,08 Arduino-rmaster.zip
BluesBox/ Clip-on_Marker Holder. zip
Clip-on_Marker Holder/ DH11_LCD1602_12C-master. zip
Dons/ OscopeTouchMega.zip
URTouch.zip
UTFT.zip

Writescad.zip

-

Selection: /home/markw/Downloads
\DH11_LCD1602_|2C-master.zip

Filcer:
ZIP files or Folders | »

|. & Cancel | v ﬁk{ |

Once the ZIP file is added, then the library can be included from the Sketch->Include Library
menu.

* AnalogReadSerial | Arduino 1.8.8

Cerl+R
Cerl+L)
CErl+Shift+L

" y thernet
Crri+Alt+5 Ethernet
Firmata

S hA
g aalvl

Cerl+k

S/ the setup routine runs once when you
void setup() {
// initialize serial communication at
Serial.begin(9600) ;

}

S/ the loop routine runs over and over a
void loop())

Temboo
WiF|

I10/Genuino Mega or Mega 2560, ATmega2560 (Mega 2560

Once a library is included, then it can be referenced inside a sketch using the name
#include <DH11_LCD1602_12C-master.h>

The actual location of the library is in the libraries folder inside the user’s Arduino folder.

To write your own libraries, review the documentation at:
https://www.arduino.cc/en/Hacking/libraryTutorial

There is a style guide for writing https://www.arduino.cc/en/Reference/AP|StyleGuide

Inline question: How to access a library in a sketch?

Board Manager

Additional non-Arduino boards (called cores) can be programmed using the Arduino IDE.
Details are given at: https://www.arduino.cc/en/guide/cores

If a board has been imported already, it can be found in the board manager by searching for
that board name. Just click the Install option.

Type |All * | |Arduino h
viar Mini, Arduing Industnal 101, Lining One.

Onlne halp

More info

Select vers d

Arduine megaAVR Boards by Arduing
Baards included i s packagea:
Arduino Uno Wik Rava,

Onne help

More info

Arduine SAM Boards (32-bits ARM Cortex-M3) by Arduino
Baards included w s packaga:

Arduino Dus

Dnbne help

More infa

Arduine SAMD Boards {32-bits ARM Cortex-M0+) by Ardulno

Boards incduded i this package:

Arduino MER WiFi 1010, arduwnof/Genwno Zera, ArduinofGenueno MERLO00, Arduing MERZERD, Arduing MER FOX 1200, Arduing MER WAN 1300,
Arduing MER GSM 1400, Arduing MER N2 1500, Arduing MO Pro, Arduing MO, Ardding Tian, Adafraet Circak Playground Exprass.,

Onlne help

More infg

Close

If the board has not been imported, use the Preferences menu Additional board URL. The
JSON url is found from the board manufacturer.

https://www.arduino.cc/en/Hacking/libraryTutorial
https://www.arduino.cc/en/Reference/APIStyleGuide
https://www.arduino.cc/en/guide/cores

Preferences

Seftings MNetwork

Sketchbook location:

Show verbose output during: [_| compilation [_| upload

Compiler warnings: |None

Display line numbers

[Enable Code Folding

Verify code after upload

[] use external editor

Check for updates on startup

Update sketch files to new extension on save (.pde -> .ino)
Save when verifying or uploading

More preferences can be edited directly in the file
C:\Users\Simone\AppData‘Local\Arduinol5\preferences.td

(edit only when Arduine is not running)

oK

(f:gt;lser.s‘@_s.imoné&_[)ocuments‘_@rduino:li Browse
Editor language: |English (English) | (requires restart of Arduino)
Editor font size: _iﬁ |

Interface scale: Automatic IDD.::::;% (requires restart of Arduina)

Additional Boards Manager URLs: E_pa g:k.a_lge:e sp8266com_index.json, http:/f d__i:g_is_.t_u_m p.com/pa g:k.a_l ge:.gi igistum _p__i_n-d EX. js_orj- (]

Cancel

For example, to add the ESP32 board use the URL:
https://dl.espressif.com/dl/package _esp32_index.json

To add the ATTiny boards use the URL.:

https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package damellis

attiny index.json

To enter multiple JSON URLSs click on the icon next to the line with the Additional Board

Manager URLs. A dialog box pops up with can support multiple lines of URLs.

https://dl.espressif.com/dl/package_esp32_index.json
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json

Settings | Mebwiark

Sketchbook location

I Shomefmarkwfarduing Browse
| Ediorlanguage System Default » | (requires restart of Arduino)
I Editor Font size; 12

Interface scale: Automatic . % (requires restart of Arduing)

Theme Default theme | {requires restart of Arduing)

BT ORTET sT RN AN sy ale® = Additional Boards Manager URLs

Compiler warnings Enter additional URLs, one For each row
Display line numbers https:/fraw. githubusercontent. com/damellis/attiny/ide-1.6.x-boards-mana 2

_ Enable Code Folding https:/fdl espressif.com/dl/package_esp32_indexjson I |
l Verify code after upload -
| Use external editor 9y | ’

Aggressively cache compil Click For a list of unofficial boards support LIRLs
| Check For updates on star Ok | | Cancel
| Lipdate sketch fles to nev—r=rmerrorsore ey

@ save when verifying or uploading

Additional Boards Manager URLs: |s/attiry/Ide-1.6.x-boards-manager/package_damellis_attiny_index json | |]

r [
lore preferences can b dlted directhy In the Fil

The board can then be installed with the Board Manager.

e Boards Manager %

Type |All | v [attin;.r l

attiny by Dawvid A. Mellis version 1.0.2 INSTALLED
Boards included in this package:

ATtiny45, ATtiny85, ATtiny 44, ATtiny84.

Mare info

Select versi.. | » || Install | Rernove

For example, here is the ATTiny board after it is installed.

|

® Boards Manager

Type [Al | v | [attiny |

attiny by David A. Mellis version 1.0.2 INSTALLED
Boards included in this package:

ATtiny 45, ATtiny85, ATtiny44, ATtiny84,

More info

Selectversi.. | v | Install | Rermove

Additional C/C++ Code

An Arduino sketch can be broken up into several files. They must all end in *.ino and the main
file must have the same name as the sketch directory. Each separate sketch ino file will appear
as a different tab in the editor window of the IDE.

TestBlink | Arduino 1.8.8

Eile Edit Sketch Tools Help

TestBlink

vold MyFunction(char *aString);

// the setup function runs once when you press reset or p
vold setup() {
// 1nitialize digital pin LED_BUILTIN as an output.
pinMode{LED_BUILTIN, OUTPUT);
Serial.begin(9680);

1

// the loop function runs over and over again forever v

Arduino/Genuino Uno on fdev

Functions in the second ino file should be declared in the primary ino sketch. The second ino file
can reference default objects like Serial that were declared in the primary sketch.

Other C++ files and include files (*.cpp and *.h) generally are made into libraries and #include
“mylibrary” is used to include the custom library.

Debugging

Compile time errors are debugged using messages in the black console window at the bottom
of the IDE.

The most common method to debug an executing program is to put Serial.printin(a variable)
into the code and look at the values in the Serial Monitor. The debug code can be removed
later. Sprinkling delay() statements in the code can indicate whether a process was reached or
completed.

Code can often be debugged with an online Arduino Simulator. Just search for “online Arduino
simulator” for links. An example is https://circuits.io/

Microsoft Visual Studio with extensions installed can debug Arduino code, assuming an Arduino
is attached.

Serial Monitor

The serial monitor can be opened from the Tools menu of the IDE.

AFaYdes My

* Blink|Arduino 1.8.8

B -t Boardinfo

8 Programmer: "AVRISP mkll"
Burm Bootlo

https://circuits.io/

The Serial Monitor window has a text entry box at the top where numbers or letters can be
entered and sent to the Arduino board by pressing the Send button. The lower large display
area is for text sent back from the Arduino board to the Arduino IDE.

Stuff to send to Arduind| Send

Blink 48
Blink 49
Blink 5@
Blink 51
Blink 52
Blink 53
Blink 54
Blink 55
Blink 56
Blink 57
Blink 58
Blink 50
Blink &@
Blink 61
Blink 62

e

| Autoscro Show timestamp Mewline v | |9600 baud v | | Clear output

Serial Plotter

For numeric data sent back from the Arduino board, the values can be graphed with the serial
plotter. Open the Serial Plotter from the Tools menu (just below the Serial Monitor). The Serial
Plotter automatically rescales the vertical axis which can be both confusing and useful.

120.0
m}.m—\
/
48.0 - /
8.0 -
40.0 -+ — 7 2
361 461 561 661 761 861

{9600 baud

Arduino as ISP

For programming non-Arduino boards, a regular Arduino board can be used to program the
non-Arduino board. Full details are at:

https://www.arduino.cc/en/tutorial/arduinolSP

The menu item is Tools -> Programmer -> Arduino as ISP

Normally the programmer is set to AVRISP mkll, and it must be changed.

| Ardui 1.8.8

Sketch OO Hels
Auto Forma

Serial Plotter
WIFIM101 S WIFINIMNA Firrmware Uipdater
Baard: "Arduino/Cenuino |

: Paort

et Boara int

Huino board is

'Programmer: "Arduino as [5F"

Burn Bootloader

el Frogrammer

no as 5P

arduino/Genuing Uno on fdevttyacMl

Usually some extra electronics components must be connected to the Arduino to communicate
with the other board.

Instead of using an Arduino as an IDE, one can use a FTDI USB breakout connected to the new
chip. For example, ATTiny chips do not have a USB connection and must use an ISP or FDTI
breakout. Some boards like the ESP32 have a USB connection and don’t need ans ISP.

https://www.arduino.cc/en/tutorial/arduinoISP

If a person is making their own Arduino board from an ATMEL microcontroller chip, they must
burn the Arduino bootloader into the chip. This is also done from the Tools -> Programmer
menu.

Preferences

There are some preferences that can be set from the File -> Preferences dialog.

+ Preferences

Settings | Mebwark

Sketchbook location;

Shome/markwfArduing Browse
Editor language: [} System Default = | (requires restart of Arduino)
Editor Font size 12
Interface scale Automatic % (requires restart of Arduing)

Therme: Cefault theme » | (requires restart of Arduing)

Showverbose output during: [compilation [upload

Compilerwarnings: Mone -

Dizplay line numbers
Enable Code Folding
Verify code after upload
Uze external editor
Aggressively cache compiled core
Check For updates on startup
Update sketch Files to new extension on save (pde -> . Ino)
Save when verifying or uploading

Additional Boards Manager URLs i

Maore preferences can be edited directly in the File
fhomemarkw)/. arduinot 5/preferences, txt

(edit only when Arduing is not running

QK [| Cancel

For example, the location of all the Arduino sketches can be changed. The editor font size can
be set. The number of compiler warnings can increased. And an external editor can be used
with the Arduino IDE.

Adding new boards can be done on this dialog box. For example, for the Expressif ESP32
board, the URL
https://dl.espressif.com/dl/package _esp32 index.json

See the Board Manager section of this document for more details.

If an external editor is used, the IDE edit window will be gray and all edits are done in the
external editor. The IDE will just be used to compile and upload the code.

Examples

Example 1: Change Arduino Uno to Nano

Hardware: Arduino Uno, Arduino Nano, USB-A, USB-mini cables
Software: Arduino IDE

Find the serial port attached to an Arduino Uno. Write a simple program to blink an LED on pin
12, then run it on the Arduino Uno. You can also edit the BLINK example. Replace the Uno with
a Nano (and change the cable from USB-A to USB-mini).

Upload the same program to the Nano. The Nano pins are standard spacing (unlike the Arduino
Uno) so it can be put into a regular breakout board.

Note 1: on the Tools menu, change the board. Often the port must be changed as well.
Note 2: Sometimes clone boards like the Nano will use the old bootloader. So if there is an error
when uploading select the older processor on the Tools menu.

https://dl.espressif.com/dl/package_esp32_index.json

¢« Blink | Arduino 1.8.8
File Edit Sketch [EEEE Helr

Auto Format

Erl+Shift+|
rl+Shifc+i

trl=+Shift+L

Burn Bootloade

Example 2: Serial Monitor and Plotter

Hardware: breadboard, potentiometer, jumper cables

Software: Arduino IDE

Connect a potentiometer to an Arduino Nano A0 analog input. Every 10 milliseconds read the
value with analogRead(A0) and write it to the Serial output with Serial.printin(). Be sure to
initialize the Serial port with Serial.begin() in the loop() section. The AnalogReadSerial example
can be edited if desired.

View the output in the Serial Monitor and in the Serial Plotter which are selected from the Tools
menu.

Note 1: Sometimes the pins of the Nano must be spread wider to fit into the breadboard.
Note 2: older versions of the Arduino IDE do not have the Serial Plotter.
Note 3: be sure the baud rate is the same for the board, the serial monitor, and the plotter.

Example 3: Second INO File

Hardware: Arduino Mega, USB-A cable

Software: Arduino IDE

Use an Arduino Mega. No special hardware wiring is required. Create a function that writes a
numeric value to the Serial output with a label. Put that function in a separate INO file in the
same directory as your main Arduino sketch. Call that separate function from the main INO
sketch.

Create a new INO file for the new function but save it into the same folder as the main INO
sketch. All INO files must be in the same folder. Sometimes it is easier to initially create the
second INO file in a text editor outside the IDE.

If the files are in the right location they will appear as separate tabs in the IDE editor.

e MultiFileExample | Arduino 1.8.8
File Edit Sketch Tools Help

MultiFileExample

[

voild WritelLabelInteger(char *myLabel, int aValue];
int counter = B;

void setup() [
Serial.begin(9600) ;

}

void loop() {

counter++;

WritelLabellnteger("The count is: ",counter);
delay(500) ;

YMNamic memory

I6{Genuino Mega or Mega 2560, ATmega2560 (Mega 2560) on fdew/ttyACMO

e MultiFileExample - WriteLabelNumber.ino | Arduino 1.8.8
File Edit Sketch Tools Help

WriteLabelMumber
vold WritelLabellnteger(char* label, int value) [{|
char theString[&4];

sprintf{theString, "%s %d",label ,value) ;
Serial.println(theString) ;

YMNamic memory

I6{Genuino Mega or Mega 2560, ATmega2560 (Mega 2560) on /dewfttyACH

In one file (WriteLabelNumber) put the function:

void WriteLabellnteger(char* label, int value) {
char theString[64];
sprintf(theString,”%s %d”,label,value);
Serial.printin(theString);

}

In the main file (MultiFileExample) declare the function:

void WriteLabellnteger(char *label, int value);
int counter = 0;

setup() {
Serial.begin(9600);

}

loop() {
counter++;
WriteLabellnteger(“The count is: “, counter);
delay(500);

}

View the output with the serial monitor.

