
Arduino IDE 
Written by Mark Webster, Ousema Zayati, and ?? 
 
Summary 
Learn to use the Arduino IDE to develop microcontroller projects. 
 

Introduction 
The software called Arduino Integrated Development Environment (Arduino IDE) is free 
software from the Arduino organization used to create programs that run on the Arduino family 
of microcontroller boards, and many other common microcontroller boards as well. 
 

Download  
The Arduino IDE can be obtained from: ​https://www.arduino.cc/en/main/software 
 

 
The IDE is cross platform and available on the three main operating systems, Windows, Mac 
OS X, and Linux. Most computers are 64 bit. Raspberry Pi computers are ARM based. 
 
On Windows the IDE is installed at C:\Program Files (x86)\Arduino\ 
On Raspbian the IDE is usually installed at:  /usr/share/arduino/ 
On other Linux systems the IDE may be in /opt/arduino/ or /usr/local/arduino/ 
 
Generally the full windows IDE is preferred over the Windows app. 

https://www.arduino.cc/en/main/software


 
The installer should put the files in the correct location. The Arduino sketches (programs) you 
create are stored in a different spot on the computer, as are the libraries you download. 
Generally, you don’t need to know where the IDE stores its files. The menu or icon shortcut will 
have the path to the arduino executable. 
 
The Arduino IDE is written in the Java language which interpreted so it is cross platform for any 
operating system with a Java Runtime Environment (JRE). That should be installed already with 
the operating system. Raspbian includes the hard float optimized version of the Java SE 
Runtime Environment. 
If for some reason it isn’t or is corrupt, then download a new version from Oracle. 
https://www.java.com/en/download/ 
 
On Linux, the version of the Arduino IDE that is installed by “sudo apt-get install arduino” is 
usually old. The newest version can be downloaded from the Arduino.cc website. For the 
Raspberry Pi, download the ARM version. Multiple versions of the Arduino IDE can be installed 
on the same computer if needed to work with older sketches. 
 

Sketch and Library Location 
The programs created with the Arduino IDE are called sketches, but they are actually C or C++ 
programs. The file extension is *.ino. The sketch is stored in a directory/folder with the same 
name as the *.ino file.  The arduino sketches and corresponding folders are located in an 
Arduino folder for newer versions of the IDE. 
 
On the Raspberry Pi for older versions of the Arduino IDE, like 1.6.6, these sketches are in a 
folder /home/pi/sketchbook. For example, the sketch KeyEcho.ino is located in 
/home/pi/sketchbook/KeyEcho/KeyEcho.ino.  All the user installed libraries on the Raspberry Pi 
for older versions of the IDE go in the folder /home/pi/sketchbook/libraries.  
 
On Linux, for newer versions of the Arduino IDE, like 1.8.8, the sketches and libraries are 
installed in a folder called “Arduino” in the user's home directory. For example, for the user “pi” 
the folder is /home/pi/Arduino/KeyEcho and the libraries are in a folder called “libraries” in the 
Arduino folder. 
 
On Windows machines the sketches and libraries are in a folder called “Arduino” in the 
Documents folder. In Windows the Documents folder is in the “My Documents” folder, or for 
Windows 10 the location is ThisPC -> Documents -> Arduino 
 
A guide to installing libraries is at: ​https://www.arduino.cc/en/Guide/Libraries 
 

https://www.java.com/en/download/
https://www.arduino.cc/en/Guide/Libraries


Compile and Upload Code 
In the Arduino IDE there are two icons on the top row for compile and upload. The checkmark is 
compile, the right arrow is upload, the grid is new sketch, the up arrow is open, the down arrow 
is save.  

 
The same commands are available on the Sketch menu. Note the keyboard shortcuts of Ctrl+R, 
Ctrl+U which are quite handy. 

 
 
By default, the Upload command also compiles the code. 
 

Inline Question: List 3 ways to compile a program 
 
In the black console window at the bottom, there are any compile errors, warnings, and also info 
on how much memory was used. Since the Arduino Uno only has 32 K of RAM, it is necessary 
to manage memory usage for larger programs. Just click in the console window and Ctrl+A to 
select all the comments, then Ctrl+C to copy them. Paste into any text editor to view the 
messages. Here’s an example of messages for the Blink program. There were no errors. 



 
 
This is the full text pasted into the Pluma text editor. Notice the actual error is a missing 
semicolon several lines above the last error found by the compiler. It helps to scroll up in the 
error messages to the first error listed. 

 
 
When successfully compiled, the black console window will describe the amount of memory 
used by each part of the code. The Arduino Uno only has 32K of flash ram so for larger 
programs this memory usage is critical information. 
 
This BLINK sketch is about as tiny as it gets, and uses 1460 bytes (0%) of program storage 
space. Maximum is 253952 bytes. 
Global variables use 9 bytes (0%) of dynamic memory, leaving 8183 bytes for local variables. 
Maximum is 8192 bytes. 
 
 
 



Selecting Board and Serial Port 
Prior to compiling a new sketch for the first time, one must select the Arduino board to be used 
and the serial port. The standard boards are listed. Clones use the same settings as the 
standard board. If additional boards are installed they will show up in the sub-menu. 

 
 
Select the port the Arduino cable is connect to. On Windows serial ports are called “COM1: , 
COM2:, etc”. On Linux serial ports are files in the “/dev/” directory. If you are unsure which port 
is used, in a terminal window before plugging in the Arduino to the USB type “ls /dev/tty*” then 
plug in the Arduino and type “ls /dev/tty*” again. The new entry will be the Arduino. Here’s and 
example of the terminal screen. 



 
 
Select the serial port on the Tools -> Port menu. 

 



The Mac OS X operating system is a form of Unix, so the serial port can be found the same way 
as a Raspberry Pi. In a terminal window just type “ls /dev/tty*” before and after plugging in the 
cable. 
 
Notice the Programmer item on the Tools menu is set to AVRISP mkil. This is the default unless 
using the Arduino as an ISP to program other microcontrollers. 

Compile 
The compilation process is simple for the user, as it was designed to be. Under the hood the 
IDE does some complicated actions. The complete build process can be found in: 
https://github.com/arduino/Arduino/wiki/Build-Process 
 
Basically, the *.ino filenames are made into *.cpp, the IDE searches for files in the Arduino 
application folder, and in the user’s library folder. It also compiles any system files needed in the 
IDE installation folder. The cross-compilers avr-gcc and avr-g++ invoked. Compiled object *.o 
files are linked together into a *.hex file which is uploaded to the Arduino board by the software 
“avrdude”. 
 
Some non-Arduino boards like ESP32 use slow Python code to compile Arduino sketches so 
the compile and upload process will take much longer than Arduino boards and their clones. 
 
The larger the program, and the larger the included libraries, the longer the compile time. 
 

Inline question: Name 3 things the IDE does when a sketch is compiled. 

Upload 
The upload button or keyboard shortcut Ctrl+U will compile and upload the sketch to the Arduino 
board on the specified serial port. If successful the message “Done uploading” will appear. The 
Arduino board serial TX and RX lights will blink. When done uploading the board will reset and 
the program will start running. Occasionally the reset fails, especially on other boards like the 
ESP32, and one must manually press the physical reset button on the board. 
 
If the serial port is messed up somehow, it generate an error message. Sometimes rebooting 
the computer will reset the serial port. Sometimes the error is real and the board is defective or 
the cable is defective. 
 
Under the hood, the program “avrdude” is called by the IDE to upload the compiled sketch.  
 

https://github.com/arduino/Arduino/wiki/Build-Process


Brave or crazy programmers can call avr-gcc and avr-dude manually within a terminal window 
and not use the Arduino IDE. There is a tutorial on avrdude at the ladyada website (related to 
Adafruit devices).  
 
http://www.ladyada.net/learn/avr/avrdude.html 
 
 

Using Libraries 
The Arduino IDE is designed to be as friendly as possible to hobbyist makers. Often this means 
hiding the messy details of controlling and communication with sensors and electronic modules. 
The messy details are put in a library that the hobbyist can call without understanding the 
internals. 
 
A few libraries are built-into the Arduino IDE, most are downloaded from the Internet and 
installed with the Library Manager. 
 
Built in libraries 
The built in libraries can be called without downloading and installing anything from the Internet. 
Details can be found at: 
https://www.arduino.cc/en/Reference/Libraries 
 
----Here’s the list of default libraries as of Arduino IDE 1.8.8 -------------- 
EEPROM - reading and writing to "permanent" storage 
Ethernet - for connecting to the internet using the Arduino Ethernet Shield, Arduino Ethernet 
Shield 2 and Arduino Leonardo ETH 
Firmata - for communicating with applications on the computer using a standard serial protocol. 
GSM - for connecting to a GSM/GRPS network with the GSM shield. 
LiquidCrystal - for controlling liquid crystal displays (LCDs) 
SD - for reading and writing SD cards 
Servo - for controlling servo motors 
SPI - for communicating with devices using the Serial Peripheral Interface (SPI) Bus 
SoftwareSerial - for serial communication on any digital pins. Version 1.0 and later of Arduino 
incorporate Mikal Hart's NewSoftSerial library as SoftwareSerial. 
Stepper - for controlling stepper motors 
TFT - for drawing text , images, and shapes on the Arduino TFT screen 
WiFi - for connecting to the internet using the Arduino WiFi shield 
Wire - Two Wire Interface (TWI/I2C) for sending and receiving data over a net of devices or 
sensors. 
 
 
Example code 

http://www.ladyada.net/learn/avr/avrdude.html
https://www.arduino.cc/en/Reference/Libraries


Most libraries, even those downloaded from the Internet will contain example programs that are 
added to the Arduino IDE File-> examples menu toward the bottom. Custom library examples 
are at the far bottom of the menu. These are valuable to figure out how to use a library. 
 

 
 
Incompatibilities 



A common problem with examples or libraries downloaded from the Internet is incompatibility 
between the library and the example code. The library may have changed since the examples 
were created. A common way to solve this problem is to look at the source code for the library 
include file and see the correct syntax for the method calls for that library. Then edit the 
example code to match the actual library code. 

Library Manager 
To install new libraries, they can be copied manually into the libraries folder or preferably, 
installed using the Library Manager which is on the Tools menu. 
To include an already installed library, use the Include Library menu item. This is not needed for 
standard libraries like <Wire.h>, <Servo.h>, <Stepper.h> which are installed by default. 

 



Including the library puts the correct #define <libraryname.h> file at the start of the *.INO sketch. 
The header file can also be included manually. 
 
If the library is not already installed, there are two choices. First option, go to the Manage 
Libraries and search for a new library using a keyword. 
 
In the Library Manager dialog, one can search through the existing libraries for a term such as 
DH11. If the library is not already installed, click on the install button. 
 

 
 
Once installed, the text “INSTALLED” will appear whenever searching for that library. Example 
code to use that library will also be installed.  
 
The second method is to download a library as a zip file, often from a location such as GitHub. 
 
Here is an example of a DH11 library in GitHub. Click the “Download ZIP” button. 

 
 
Once the ZIP file is downloaded, go to the Sketch->Include Library->Add .ZIP library option. 
Navigate to where the ZIP file is located, select it and click OK 



 
 
Once the ZIP file is added, then the library can be included from the Sketch->Include Library 
menu. 



 
 
Once a library is included, then it can be referenced inside a sketch using the name 
#include <DH11_LCD1602_I2C-master.h> 
 
The actual location of the library is in the libraries folder inside the user’s Arduino folder. 
 



To write your own libraries, review the documentation at: 
https://www.arduino.cc/en/Hacking/libraryTutorial 
 
There is a style guide for writing ​https://www.arduino.cc/en/Reference/APIStyleGuide 
 

Inline question: How to access a library in a sketch? 

Board Manager 
Additional non-Arduino boards (called cores) can be programmed using the Arduino IDE. 
Details are given at: ​https://www.arduino.cc/en/guide/cores 
If a board has been imported already, it can be found in the board manager by searching for 
that board name. Just click the Install option.  

 
 
If the board has not been imported, use the Preferences menu Additional board URL. The 
JSON url is found from the board manufacturer. 

https://www.arduino.cc/en/Hacking/libraryTutorial
https://www.arduino.cc/en/Reference/APIStyleGuide
https://www.arduino.cc/en/guide/cores


 
 
For example, to add the ESP32 board use the URL: 
https://dl.espressif.com/dl/package_esp32_index.json 
 
 
 
To add the ATTiny boards use the URL: 
 
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_
attiny_index.json 
 
To enter multiple JSON URLs click on the icon next to the line with the Additional Board 
Manager URLs. A dialog box pops up with can support multiple lines of URLs. 

https://dl.espressif.com/dl/package_esp32_index.json
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json
https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json


 
The board can then be installed with the Board Manager. 

 
 
For example, here is the ATTiny board after it is installed. 

 



Additional C/C++ Code 
An Arduino sketch can be broken up into several files. They must all end in *.ino and the main 
file must have the same name as the sketch directory. Each separate sketch ino file will appear 
as a different tab in the editor window of the IDE. 

 
Functions in the second ino file should be declared in the primary ino sketch. The second ino file 
can reference default objects like Serial that were declared in the primary sketch. 
 
Other C++ files and include files (*.cpp and *.h) generally are made into libraries and #include 
“mylibrary” is used to include the custom library. 
 



 

Debugging 
Compile time errors are debugged using messages in the black console window at the bottom 
of the IDE. 
The most common method to debug an executing program is to put Serial.println( a variable) 
into the code and look at the values in the Serial Monitor. The debug code can be removed 
later. Sprinkling delay() statements in the code can indicate whether a process was reached or 
completed. 
 
Code can often be debugged with an online Arduino Simulator. Just search for “online Arduino 
simulator” for links. An example is ​https://circuits.io/ 
 
 
Microsoft Visual Studio with extensions installed can debug Arduino code, assuming an Arduino 
is attached. 

Serial Monitor 
The serial monitor can be opened from the Tools menu of the IDE. 

 
 

https://circuits.io/


The Serial Monitor window has a text entry box at the top where numbers or letters can be 
entered and sent to the Arduino board by pressing the Send button. The lower large display 
area is for text sent back from the Arduino board to the Arduino IDE. 
 
 

 
 

Serial Plotter 
For numeric data sent back from the Arduino board, the values can be graphed with the serial 
plotter. Open the Serial Plotter from the Tools menu (just below the Serial Monitor). The Serial 
Plotter automatically rescales the vertical axis which can be both confusing and useful. 
 

 



Arduino as ISP 
For programming non-Arduino boards, a regular Arduino board can be used to program the 
non-Arduino board. Full details are at: 
https://www.arduino.cc/en/tutorial/arduinoISP 
The menu item is Tools -> Programmer -> Arduino as ISP 
Normally the programmer is set to AVRISP mkll, and it must be changed.  
 

 
Usually some extra electronics components must be connected to the Arduino to communicate 
with the other board.  
 
Instead of using an Arduino as an IDE, one can use a FTDI USB breakout connected to the new 
chip. For example, ATTiny chips do not have a USB connection and must use an ISP or FDTI 
breakout. Some boards like the ESP32 have a USB connection and don’t need ans ISP. 

https://www.arduino.cc/en/tutorial/arduinoISP


 
If a person is making their own Arduino board from an ATMEL microcontroller chip, they must 
burn the Arduino bootloader into the chip. This is also done from the Tools -> Programmer 
menu. 
 

Preferences 
There are some preferences that can be set from the File -> Preferences dialog. 

 



For example, the location of all the Arduino sketches can be changed. The editor font size can 
be set. The number of compiler warnings can increased. And an external editor can be used 
with the Arduino IDE. 
 
 
Adding new boards can be done on this dialog box. For example, for the Expressif ESP32 
board, the URL  
https://dl.espressif.com/dl/package_esp32_index.json 

 

See the Board Manager section of this document for more details. 
 
If an external editor is used, the IDE edit window will be gray and all edits are done in the 
external editor. The IDE will just be used to compile and upload the code. 

Examples 

Example 1: Change Arduino Uno to Nano 
Hardware​: Arduino Uno, Arduino Nano, USB-A, USB-mini cables 
Software​: Arduino IDE 
 
Find the serial port attached to an Arduino Uno. Write a simple program to blink an LED on pin 
12, then run it on the Arduino Uno. You can also edit the BLINK example. Replace the Uno with 
a Nano (and change the cable from USB-A to USB-mini). 
Upload the same program to the Nano. The Nano pins are standard spacing (unlike the Arduino 
Uno) so it can be put into a regular breakout board. 
 
Note 1: on the Tools menu, change the board. Often the port must be changed as well. 
Note 2: Sometimes clone boards like the Nano will use the old bootloader. So if there is an error 
when uploading select the older processor on the Tools menu. 

https://dl.espressif.com/dl/package_esp32_index.json


 
 
 

Example 2: Serial Monitor and Plotter 
Hardware​: breadboard, potentiometer, jumper cables 
Software​: Arduino IDE 
Connect a potentiometer to an Arduino Nano A0 analog input. Every 10 milliseconds read the 
value with analogRead(A0) and write it to the Serial output with Serial.println(). Be sure to 
initialize the Serial port with Serial.begin() in the loop() section. The AnalogReadSerial example 
can be edited if desired. 
 
View the output in the Serial Monitor and in the Serial Plotter which are selected from the Tools 
menu. 
 
Note 1: Sometimes the pins of the Nano must be spread wider to fit into the breadboard. 
Note 2: older versions of the Arduino IDE do not have the Serial Plotter. 
Note 3: be sure the baud rate is the same for the board, the serial monitor, and the plotter. 



 
 
 

Example 3: Second INO File 
Hardware​: Arduino Mega, USB-A cable 
Software​: Arduino IDE 
Use an Arduino Mega. No special hardware wiring is required. Create a function that writes a 
numeric value to the Serial output with a label. Put that function in a separate INO file in the 
same directory as your main Arduino sketch. Call that separate function from the main INO 
sketch. 
Create a new INO file for the new function but save it into the same folder as the main INO 
sketch. All INO files must be in the same folder. Sometimes it is easier to initially create the 
second INO file in a text editor outside the IDE. 
If the files are in the right location they will appear as separate tabs in the IDE editor. 



 



 
In one file (WriteLabelNumber) put the function: 
 
void WriteLabelInteger( char* label, int value ) { 

char theString[64]; 
sprintf(theString,”%s %d”,label,value); 
Serial.println(theString); 

} 
 
In the main file (MultiFileExample) declare the function: 
 
void WriteLabelInteger( char *label, int value); 
int counter = 0; 



 
setup() { 

Serial.begin(9600); 
} 
 
loop() { 
 

counter++; 
WriteLabelInteger( “The count is: “, counter); 
delay(500); 

} 
 

 
View the output with the serial monitor. 


